Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 11(20): e4202, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34761074

RESUMO

Iron-sulfur proteins are primordial catalysts and biological electron carriers that today drive major metabolic pathways across all forms of life. They can access a diversity of oxidation states and can mediate electron transfer over an extended range of reduction potentials spanning more than 1 V. Depending on the protein micro-environment and geometry of ligand, co-ordination the iron-sulfur clusters can occur in different forms [2Fe-2S], [3Fe-4S], HiPIP [4Fe-4S], and [4Fe-4S]. There are several spectroscopic methods available to characterize the composition and electronic configuration of the iron-sulfur clusters, such as optical methods and electron paramagnetic resonance. This paper presents the protocols used to characterize the metal center of Coiled-Coil Iron-Sulfur (CCIS), an artificial metalloprotein containing one [4Fe-4S] cluster. It is expected that these protocols will be of general utility for other iron-sulfur proteins.

2.
Bio Protoc ; 11(18): e4169, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34692918

RESUMO

Iron-sulfur proteins are ubiquitous among all living organisms and are indispensable for almost all metabolic pathways ranging from photosynthesis, respiration, nitrogen, and carbon dioxide cycles. The iron-sulfur clusters primarily serve as electron acceptors and donors and transfer electrons to active sites of various enzymes, thus driving the energy metabolism. Prokaryotes like E. coli have ISC and SUF pathways that help in the assembly and maturation of iron-sulfur proteins. These iron-sulfur proteins, especially with [4Fe-4S] clusters, are highly sensitive to molecular oxygen, and it would be advantageous if the de novo proteins and native proteins having iron-sulfur binding sites are expressed and isolated under anaerobic conditions. Bacterially assembled iron-sulfur proteins, when isolated and purified anaerobically, exhibit improved biochemical and biophysical stabilities in comparison to the counterparts expressed and purified aerobically and reconstituted under anaerobic conditions. This protocol outlines the expression and purification of the artificial protein, Coiled-Coil Iron-Sulfur (CCIS). It may be deployed to both natural and artificial [4Fe-4S] proteins when heterologously expressed in E. coli.

3.
FEBS J ; 287(5): 991-1004, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31549491

RESUMO

Type-II water-soluble chlorophyll (Chl) proteins (WSCPs) of Brassicaceae are promising models for understanding how protein sequence and structure affect Chl binding and spectral tuning in photosynthetic Chl-protein complexes. However, to date, their use has been limited by the small number of known WSCPs, which also limited understanding their physiological roles. To overcome these limitations, we performed a phylogenetic analysis to compile a more comprehensive and complete set of natural type-II WSCP homologues. The identified homologues were heterologously expressed in Escherichia coli, purified, tested for assembly with chlorophylls, and spectroscopically characterized. The analyses led to the discovery of previously unrecognized type-IIa and IIb subclass WSCPs, as well as of a new subclass that did not bind chlorophylls. Further analysis by ancestral sequence reconstruction yielded sequences of putative ancestors of the three subclasses, which were subsequently recombinantly expressed in E. coli, purified and characterized. Combining the phylogenetic and spectroscopic data with molecular structural information revealed distinct Chl-binding motifs, and identified residues critically impacting spectral tuning. The distinct Chl-binding properties of the WSCP archetypes suggest that the non-Chl-binding subclass evolved from a Chl-binding ancestor that most likely lost its Chl-binding capacity upon localization in the plant tissues with low Chl content. This dual evolutionary trajectory is consistent with WSCPs association with the Kunitz-type protease inhibitors superfamily, and indications of their inhibitory activity in response to various forms of stress in plants. These findings suggest new directions for exploring the physiological roles of WSCPs and the correlation, if any, between Chl-binding and protease inhibition functionality.


Assuntos
Brassicaceae/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Água/química , Clorofila/metabolismo , Escherichia coli/metabolismo , Filogenia , Solubilidade
4.
Biotechnol Prog ; 34(4): 868-877, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29388362

RESUMO

Inulinases are fructofuranosyl hydrolases that target the ß-2,1 linkage of inulin and hydrolyze it into fructose, glucose and inulooligosaccharides (IOS), the latter are of growing interest as dietary fibers. Inulinases from various microorganisms have been purified, characterized and produced for industrial applications. However, there remains a need for inulinases with increased catalytic activity and better production yields to improve the hydrolysis process and fulfill the growing industrial demands for specific fibers. In this study, we used directed enzyme evolution to increase the yield and activity of an endoinulinase enzyme originated from the filamentous fungus Talaromyces purpureogenus (Penicillium purpureogenum ATCC4713). Our directed evolution approach yielded variants showing up to fivefold improvements in soluble enzyme production compared to the starting point which enabled high-yield production of highly purified recombinant enzyme. The distribution of the enzymatic reaction products demonstrated that after 24 h of incubation, the main product (57%) had a degree of polymerization of 3 (DP3). To the best of our knowledge, this is the first application of directed enzyme evolution to improve inulooligosaccharide production. The approach enabled the screening of large genetic libraries within short time frames and facilitated screening for improved enzymatic activities and properties, such as substrate specificity, product range, thermostability and pH optimum. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:868-877, 2018.


Assuntos
Glicosídeo Hidrolases/metabolismo , Talaromyces/enzimologia , Talaromyces/metabolismo , Cromatografia Líquida de Alta Pressão , Glicosídeo Hidrolases/genética , Oligossacarídeos/metabolismo , Penicillium/genética , Penicillium/metabolismo , Especificidade por Substrato , Talaromyces/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...